
Processing (Proce55ing) Tutorial for Macromedia Minds

A Tutorial Workshop originally aimed at ITP Students, supplementary to course material for
"Introduction to Computational Media", "Programming for Non-Programmers", and "Code and Me"

Language: English , Español, Japanese , Korean

Workshop Teacher
Josh Nimoy
contact: jn429 [at] nyu [dot] edu
website

Software Creators
Processing is an open project
initiated by
Ben Fry and Casey Reas

Japanese Translation by
Hironobu Fujiyoshi and Ayako
Takabatake
contact: hf [at] cs [dot] chubu
[dot] ac [dot] jp

Korean Translation by
Koo-Chul Lee
contact: kclee [at] phya [dot] snu
[dot] ac [dot] kr

Spanish Translation by
Gerald Kogler & Angela Precht
contact: geraldo [at] yuri [dot] at

Description
Processing is a context for exploring the emerging conceptual space enabled by electronic
media. It is an environment for learning the fundamentals of computer programming within
the context of the electronic arts and it is an electronic sketchbook for developing ideas.
www.Proce55ing.net

The Processing environment is the easiest Java compiler / interactive graphics and multimedia
programming environment known to man. The system can be used to produce locally run
pieces, as well as web-embeddable Java applets. Quite deliberately, the system is also
designed to bridge the gap between educational graphics programming environments, and
"real Java." Processing can be used like training wheels, but does not have to be.

The goal of this tutorial is to introduce users of Macromedia Flash and Director to the
Processing environment by comparing and contrasting the systems. The theory is that the
knowledge gained from these Macromedia tools can easily transfer, reducing the amount of
required teaching. It assumes you have a basic understanding of either Macromedia product.
By the end of this tutorial, you should be able to produce and publish your own Processing
(Java) pieces, and communicate through a serial port with a BX-24 chip.

Table of Contents
Introduction
Obtaining the Processing Software
A tour of the interface
Lower Level Media Manipulation
Syntax Structure
Static 2D Drawing
Time and Motion
Mouse & Keyboard
Presentation / Exporting
Drawing Image Files
3D Form
Pixels
Typography
Serial
The Future

http://www.jtnimoy.net/itp/p5/workshop/ (1 of 20) [8/28/2007 9:02:21 AM]

http://www.itp.nyu.edu/
http://stage.itp.tsoa.nyu.edu/%7EICM/
http://www.jtnimoy.net/itp/p5/workshop/index_espanol.html
http://www.jtnimoy.net/itp/p5/workshop/index_japanese.html
http://www.jtnimoy.net/itp/p5/workshop/index_korean.html
http://jtnimoy.net/
http://acg.media.mit.edu/people/fry/
http://www.groupc.net/
http://www.vision.cs.chubu.ac.jp/
http://physics.snu.ac.kr/~kclee/index.html
http://yuri.at/go/
http://www.proce55ing.net/
http://dbn.media.mit.edu/
http://www.basicx.com/

Processing (Proce55ing) Tutorial for Macromedia Minds

Introduction
Currently in on-screen interaction design classes, the dominant teaching vehicle has been
Flash or Director. Students are beginning to produce geometrically dynamic and more
algorithmically complex pieces influenced by works done in environments other than their
own. At ITP, I witnessed an experiment in one such class (although since then, they've been
using Processing). In the middle of teaching Director Lingo, a one-week excursion into Java
programing introduced students to a language other than Lingo - in hopes that they would get
a more diverse view of different programming systems. A template was given to them - and
they simply changed the code with a quick rosetta stone reference. After this week of
confusion, several students were left with an empty yearning to learn more Java. There was
no easy way to tell them that the average college Java course usually has you working in a
text console, and has little or no relationship to "Applet Graphics" unless it is a course
specifically targeted to teach that. In the following lesson, I hope to bridge this academic gap
with the help of the Processing environment. It is not meant as a replacement to those Java
courses; it is a supplement which takes care of the logistics - without getting deep into syntax
nuances. Also, Processing and Java are not being presented as the next level beyond
Macromedia, nor are they being presented as a lower level system. They are simply an
alternative, capable of doing different things in different ways. If you are currently attending a
Java course, it may be possible to use Processing for your assignments, depending on how
flexible your instructor is. This tutorial is a mixture of my own writing and images - with those
found on one state of the Processing website, maintained by Casey Reas and Ben Fry. You will
get to know these two names if you are a Processing user.

Obtaining the
Processing
Software

Processing is free (free as in free beer, free as in free speech, free as in free country), and still
in development stages. It will continue to be free even after it is finished. The software is
currently in ALPHA phase, which is the thing that comes before BETA. Bugs are being fixed,
and features are being added. In order to download the cross-platform install program you
can email its developers to join the testing community. On the Processing website, click
Download for further instructions. Additionally, there is an avid messaging system amongst
the testers. It is highly recommended that you create a login for yourself. This community is
the best way to receive help on any topic - from other testers, from the authors themselves,
and from lurking geeks such as the author of this tutorial. It is also important to note that this
is the online community that helps develop Processing by discussing features in those forums.
On the Processing website, click Discourse. It is also important to note that the Processing
software and website are constantly being updated. Check back for new additions to the
reference, and new versions of the software. Right now is an exciting time!

A tour of the
interface

The following image is taken from www.Proce55ing.net. To see it in context, click Reference,
then Environment.

Immediately, you are probably thinking "Wow, this is such a simple interface. How could it
possibly be as capable as Director or Flash?" Both Director and Flash have all kinds of import
and media editing interfaces based on common tasks in commercial multimedia. In
Processing, all of this is either done using another program, or done by programming in Java.
For example, Flash provides its own mini-Illustrator, while Director provides its own mini-

http://www.jtnimoy.net/itp/p5/workshop/ (2 of 20) [8/28/2007 9:02:21 AM]

http://www.itp.nyu.edu/
http://stage.itp.nyu.edu/%7EICM/rosetta.html
http://www.jtnimoy.net/itp/p5/workshop/freehand.html

Processing (Proce55ing) Tutorial for Macromedia Minds

Photoshop. In consequence, a large body of work done in both pieces of software have
resembled the restrictions of their integrated editors. In Processing (and in Java), you provide
your own list of vector paths or GIF files, and you render them using programming. You are
free to generate your own forms and structures using the language to control the pixels on
the screen more directly. For those experimental people who aim to produce new forms
independently or ahead of the status quo and its automation tools, Processing can be more
convenient.

Here is an introduction to the six buttons on the left side of the window.

The play button is the same as in Director and Flash. Press this to see your
code execute as a program.

The stop button is the same as in Director and Flash. Press this to see
your program stop executing.

Creates a new file. Processing calls them sketches. You can even call them
applets, programs, or interactive pieces. Director and Flash call them
movies.

Opens a pre-existing sketch. A menu will pop up and you can choose from
your own collection, saved in the special Processing sketch folder which I
will show you later. You can also choose from a wide variety of example
sketches by famous new media designer/artists, in order to learn from
them and use them as a code reference.

Saves the current sketch into the Processing sketches folder. If you want
to give the sketch a name other than the current date, you can choose
save As from the File menu.

Exports the current sketch into the Processing sketches folder - this time
as a Java applet - complete with its very own HTML file. This feature will be
covered in more depth.

For detailed and advanced information about the Processing environment, see the Processing
Environment reference.

Lower Level
Media

Manipulation

In Director, one imports or creates media into a cast, then drag it onto a stage where it will
exist as a sprite. In Flash, one also imports or creates media into a library, then instances
them as movieclips on a similar stage. In Processing (and in Java) this media importing is all
done in code, similar to the way HTML works. Additionally, any custom media that you invent
(vector systems, DNA data, color samples from the film, Fargo) can all be embedded as part
of the Java code. In fact, you are not restricted to having any external images or sounds if
you want to keep everything in one tidy file - because the pixels of an image can also be
converted to be part of your code, and sound data can also be stored as a large array of data.
The benefit of having a library or cast is for better control over formatting, in order to save
disk space / memory, and in order to add specific point-&-click features onto a common file
system metaphor. The benefit of a sprite or movieclip is so that a visible, tangible object can
sit on the screen and be an easy way for people to make buttons, videogame characters,
individual graphic elements, and other visual, controllable, positive space elements. However,
in creating cooperative groups of elements, and objects that are neither positive nor negative
space - this metaphor has become a burden to some. In Processing, this complex layer does
not exist; there is only mouse/keyboard/serial events in conjunction with basic drawing
routines. One takes care of redrawing the scene repeatedly, in response to input changes and
time. In a matter of speaking, it is your responsibility to write your own sprite or movieclip
system, but you are not required to. Invent another metaphor that would be more useful to
you as an artist. It also affords the opportunity to deeply diversify the aesthetic from those
works we often spot as Macromedia-influenced.

In the coming sections within this guide, I introduce methods for rendering imagery to the

http://www.jtnimoy.net/itp/p5/workshop/ (3 of 20) [8/28/2007 9:02:21 AM]

http://www.jtnimoy.net/itp/p5/workshop/resedit.html
http://proce55ing.net/reference/environment/index.html
http://proce55ing.net/reference/environment/index.html
http://www.jtnimoy.net/itp/p5/workshop/burden.html
http://proce55ing.net/learning/examples/mouse_functions.html
http://proce55ing.net/learning/examples/mouse_functions.html

Processing (Proce55ing) Tutorial for Macromedia Minds

screen. Then I will introduce time and animation. Finally, I will show you how to add
interaction with the mouse, keyboard, and serial port. These are the basic building blocks for
anything you wanted to do in high-level tools. You will be capable of doing them in Java if you
put your mind to constructing them yourself.

Syntax
Structure

For those of you who use FlashMX, this is a review. The following is called structure00 in the
example sketches.

// Statements & Comments
// by REAS

// Statements are the elements that make up programs.
// The ";" is used to end statements. It is called the "statement terminator."
// Comments are used for making notes to help people better understand programs.
// A comment begins with two forward slashes ("//").

// Created 1 September 2002

// The size function is a statement that tells the computer
// how large to make the window.
// Each function statement has zero or more parameters.
// Parameters are data passed into the method
// and used as values for specifying what the computer will do.
size(200, 200);

// The background function is a statement that tells the computer
// which color to make the background of the window
background(102);

And Java variables are as follows:

int x = 0;
println(x);
x=x+1;
println(x);
x=x+1;
println(x);

Press play and see this:

0
1
2
3

Flash people: there is no such thing as var. For in-depth information on variables, consult the
official Java language tutorial.
Here is the part about variables.

What about if-then?

int a = 1;
int b = 2;

if(a==b){
 println("same");
}else{
 println("different");
}

Press play and see this: different

Things are a bit different from Lingo when it comes to comparison. The programmer uses a
single "=" to assign a variable some value. One uses a "==" (double equal) when trying to
determine whether or not a number equals another number. Additionally, "not equal to" is no
longer "<>" - it is now "!=" - and the rest are the same ("<" , ">" , ">=" , and "<="). For

http://www.jtnimoy.net/itp/p5/workshop/ (4 of 20) [8/28/2007 9:02:21 AM]

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html

Processing (Proce55ing) Tutorial for Macromedia Minds

more information on conditionals, consult the authority.

What about repeating loops?

for(int i=0 ; i<5 ; i++){
 println(i);
} Press play and see this:

0
1
2
3
4

Lingo people, this is the same as "repeat with i = 0 to 4." Inside those parentheses, there are
three special statements separated by two semicolons. The first statement creates a
temporary variable. The second statement specifies a condition which allows the loop to
continue looping. As soon as i is no longer smaller than 5, then the loop will stop. The third
statement gives you a chance to incrementally change i however you want. "i++" is
shorthand for "i = i + 1". Sun can tell you much more about for loops.

While loops are similar to the structure of an if-then.

while(6!=2){
 println("muhuhaha!");
} Don't run this program! :)

If you are curious about getting heavy on the flow-control syntax, here is a broader link to the
Java language tutorial, the part about flow-control.

I will get into custom routines (functions) in a little while. I give you these basic introductions
to the syntax - not in order to be thorough, but in order that you will understand the drawing
functions that are about to follow.

For more introduction to the structures, see the Processing Language Comparison and the
Processing Structure Examples.

Static 2D
Drawing

size(200,100);
background(0,0,0);
stroke(255,0,0);
point(50,50);
stroke(0,255,0);
point(100,50);
stroke(0,0,255);
point(150,50);

Run this code, and you
should hopefully get the
following image. This is
a wide black window
with three pixels colored
red, green, and blue.

Let us break this code down, line for line.

First of all, it is necessary to know that the screen is a graph of
pixels - each individually addressable by a unique (X,Y) coordinate.
The origin (0,0) is at the top left corner of the rectangle. As you
add to Y, you move down. As you add to X, you move to the right.
It's similar to playing the boardgame, Battleship. This is no
different from Director or Flash.

http://www.jtnimoy.net/itp/p5/workshop/ (5 of 20) [8/28/2007 9:02:21 AM]

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/if.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/for.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://proce55ing.net/reference/compare/index.html
http://proce55ing.net/learning/examples/structure00.html

Processing (Proce55ing) Tutorial for Macromedia Minds

size(200,100);

Calling the size function lets the size of the canvas to 200 pixels high, 100 pixels wide. If you
do not call this at the beginning, the default will be 100x100.

background(0,0,0);

Calling the background function lets you change the color of the entire canvas. In Director,
this is the stage color. In Flash, this is the document's background color. 0,0,0 means black. If
you never call background in Processing, then the default will be gray.

stroke(255,0,0);

Calling the stroke function lets you change the current drawing color so that every drawing
command called after it will draw using that color. 255,0,0 means red. If you never call stroke
in Processing, then the default will be black.

point(50,50);

Calling the point function will set the pixel at 50,50 to the current stroke color. In this case,
red.

stroke(0,255,0);
point(100,50);

This code makes a green dot in the center.

stroke(0,0,255);
point(150,50);

This code makes the blue dot on the right.

As you can see, this is similar to draw() Image Lingo, or those drawing methods in
ActionScript. You control the screen like it is a canvas that understands certain drawing
operations. Let us now expand to more complex shapes.

background(0,0,0);
stroke(255,255,255);
line(0,0,60,40);
stroke(255,255,0);
line(30,50,100,100);

Here, I am drawing two lines. The
first one is white, and the second
one is yellow.

In the line function, the first two
parameters are the first x,y
coordinate, and the last two
parameters are the second x,y
coordinate. The line is drawn from
the first coordinate to the second.

Now, here are some pre-fab shapes.

size(150,100);
quad(61,60, 94,60, 99,83, 81,90);
rect(10,10,60,60);
ellipse(80,10,60,60);
triangle(12,50, 120,15, 125,60);

triangle will draw a three-pointed polygon. It has six parameters. Parameters 1 and 2 are the
first X,Y coordinate. Parameters 3 and 4 are the second X,Y coordinate. Parameters 5 and 6
are the third X,Y coordinate.

triangle(x1, y1, x2, y2, x3, y3);

http://www.jtnimoy.net/itp/p5/workshop/ (6 of 20) [8/28/2007 9:02:21 AM]

Processing (Proce55ing) Tutorial for Macromedia Minds

quad will draw a four-pointed polygon. The structure of the parameters are similar to that of
triangle, but this time, a fourth pair of parameters are added to specify a fourth X,Y
coordinate.

quad(x1, y1, x2, y2, x3, y3, x4, y4);

rect will draw a rectangle. The first and second parameter will specify the position, while the
third and fourth parameters specify the width and height.

rect(x, y, width, height);

ellipse will draw an oval. Its parameters work the same way as those in rect.

ellipse(x, y, width, height);

Now I will modify this program to show you something new. The new code is marked.

size(150,100);
fill(#CC6600);
stroke(#FFFFFF);
quad(61,60, 94,60, 99,83, 81,90);
rect(10,10,60,60);
ellipse(80,10,60,60);
triangle(12,50, 120,15, 125,60);

(Notice here, I am specifying colors in a different way than before - this time HTML style)

Fill is introduced as the cousin of stroke. Fill is what makes the polygons green, while stroke
is what makes the outlines red. Fill's parameters specify a color, like stroke. The default fill is
white. But what if I want no fill?

size(150,100);
noFill();
stroke(#FFFFFF);
quad(61,60, 94,60, 99,83, 81,90);
rect(10,10,60,60);
ellipse(80,10,60,60);
triangle(12,50, 120,15, 125,60);

Now, you can see the quad underneath the oval because only the strokes are being drawn.
Similarly, there is noStroke, which disables the outline from being drawn. To enable stroke or
fill once more, you must call stroke or fill, specifying a color.

Drawing with curves is slightly more complex than drawing with straight lines. Specifying a
curve requires providing non-visual information that helps to define the severity and direction
of curvature. Processing provides both the curve() and bezier() methods.

curve(84, 91, 68, 19, 21, 17, 32, 100);

http://www.jtnimoy.net/itp/p5/workshop/ (7 of 20) [8/28/2007 9:02:21 AM]

Processing (Proce55ing) Tutorial for Macromedia Minds

curve(10, 26, 83, 24, 83, 61, 25, 65);

stroke(255, 102, 0);
line(85, 20, 10, 10);
line(90, 90, 15, 80);
stroke(0, 0, 0);
bezier(85, 20, 10, 10, 90, 90, 15, 80);

stroke(255, 102, 0);
line(30, 20, 80, 5);
line(80, 75, 30, 75);
stroke(0, 0, 0);
bezier(30, 20, 80, 5, 80, 75, 30, 75);

curve(x1, y1, x2, y2, x3, y3, x4, y4);
bezier(x1, y1, x2, y2, x3, y3, x4, y4);

For the curve() function, the first and second parameters specify the first point of the curve
and the last two parameters specify the second point of the curve. The middle parameters set
the points for defining the shape of the curve.

For the bezier() function, the first two parameters specify the first point in the curve and the
last two parameters specify the last point. The middle parameters provide the context for
defining the shape of the curve.

In the bezier() examples above, the orange lines reveal the hidden control points for the
curves.

Although Processing has provided these quick primitives, you are still free (and encouraged)
to construct your own shapes.

Using the beginShape() and endShape() methods are the key to creating more complex
forms. beginShape() begins recording vertices for a shape and endShape() stops
recording. The beginShape() command requires a parameter to tell it which type of shape
to create from the provided vertices. The parameters available for beginShape() are LINES,
LINE_STRIP, LINE_LOOP, TRIANGLES, TRIANGLE_STRIP, QUADS, QUAD_STRIP, and
POLYGON. After giving the beginShape() command, a series of vertex() commands must
follow. To stop drawing the shape, give the endShape() command. Vertex() commands
with two parameters specify a position in 2D and vertex() commands with three parameters
specify a position in 3D. Each shape will be outlined with the current stroke color and filled
with the fill color (see the Color section for more information).

The following note is found in the Processing reference:

Processing is only able to draw convex polygons, but we are working
on the code for supporting concave polygons. For future releases there
will be separate parameters for CONVEX_POLYGON and
CONCAVE_POLYGON.

Although this is the case, you can still look up some examples on the web that will tell you
how to construct anything you want from convex polygons.

Here are some examples from Proce55ing.net

http://www.jtnimoy.net/itp/p5/workshop/ (8 of 20) [8/28/2007 9:02:21 AM]

Processing (Proce55ing) Tutorial for Macromedia Minds

beginShape(LINE_LOOP);
vertex(30, 20, -50);
vertex(85, 20, 0);
vertex(85, 75, -80);
vertex(30, 75, 0);
endShape();

beginShape(TRIANGLES);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

beginShape(TRIANGLE_STRIP);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

noFill();
beginShape(TRIANGLE_STRIP);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

noStroke();
fill(153, 153, 153);
beginShape(TRIANGLE_STRIP);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

http://www.jtnimoy.net/itp/p5/workshop/ (9 of 20) [8/28/2007 9:02:21 AM]

Processing (Proce55ing) Tutorial for Macromedia Minds

noStroke();
fill(102);
beginShape(POLYGON);
vertex(38, 23);
vertex(46, 23);
vertex(46, 31);
vertex(54, 31);
vertex(54, 38);
vertex(61, 38);
vertex(61, 46);
vertex(69, 46);
vertex(69, 54);
vertex(61, 54);
vertex(61, 61);
vertex(54, 61);
vertex(54, 69);
vertex(46, 69);
vertex(46, 77);
vertex(38, 77);
endShape();

beginShape(LINE_STRIP);
curveVertex(84, 91);
curveVertex(68, 19);
curveVertex(21, 17);
curveVertex(32, 100);
endShape();

beginShape(LINE_STRIP);
curveVertex(84, 91);
curveVertex(84, 91);
curveVertex(68, 19);
curveVertex(21, 17);
curveVertex(32, 100);
curveVertex(32, 100);
endShape();

beginShape(LINE_STRIP);
bezierVertex(30, 20);
bezierVertex(80, 0);
bezierVertex(80, 75);
bezierVertex(30, 75);
endShape();

For more detailed information about vector drawing, see the Processing Form Examples, the
Processing Shape reference.

There is much more to draw and render to the screen, but I have only given you the 2D
drawing routines so that we can cover animation and interactivity. Then we will return to the
other drawing methods.

http://www.jtnimoy.net/itp/p5/workshop/ (10 of 20) [8/28/2007 9:02:21 AM]

http://proce55ing.net/learning/examples/points_lines.html
http://proce55ing.net/reference/beginShape_.html

Processing (Proce55ing) Tutorial for Macromedia Minds

Time and
Motion

In Director, there is the score. You are given a playback head, and tweening methods for
sprites. Things like video, embedded Flash, QTVRs, and sound seem to animate in their own
time-space. If you are working on more of a dynamic animation, you might only use one
frame and code in responses to an ExitFrame or PrepareFrame event. In Flash, you are
given a timeline, and a bit more complex tweening support than director. Those who choose
to work completely in ActionScript commonly use two frames - one for setup and to call a
looping frame, and the other to loop forever. Actionscript also allows you to respond in code in
an onClipEvent (enterFrame). Processing has no timeline, score, or tweening methods,
unless you choose to structure your code as such. Like Lingo and Actionscript, Processing
allows you to respond to a frame-progression event handler with your own drawing routine.
Up until now, I have been showing you Processing code in Basic Mode. This mode is for
drawing static images. It is merely a shopping list of visual elements. Processing has three
modes of operation: basic, standard, and advanced. Advanced Mode is conventional Java,
without training wheels. In order to begin with time and motion, we will now move forward to
Standard Mode. If you had been clicking my tangential links in my text, you may have seen
one or two standard mode Processing programs. Here is a simple example:

int x = 0;

void setup(){
 noStroke();
}

void loop(){
 background(190);
 rect(x, 0, 5, 100);
 x=x+1;
}

In this example, a white rectangle
moves from left to right, only once.

An animated GIF shows this motion
on the right.

The optional setup() section runs once when the program begins. The loop() section runs
forever until the program is stopped. In Lingo, setup() is similar to beginSprite or
startMovie - and loop() is similar to ExitFrame or PrepareFrame. In Flash, setup() is
similar to the first frame of the animation that only executes once, then calls the loop. Setup
() and loop() are both functions. You can also write your own functions for organization
and encapsulation of complexity. For more information on writing custom functions in Java,
see Sun's Java language tutorial - Implementing Methods section.

Once you have written the first function in Processing, that program will automatically switch
to standard mode. Any statements outside of your function that are not variable initializes will
no longer work when you press play. You can move this code to either setup() or loop(). If
you want a variable to be global (meaning that it retains its value outside the scope of the
functions) then declare it at the top of the program, outside of both loop() and setup(). In
the example above, the variable x was declared global.

In Processing, the framerate(n) function can be used to slow down or speed up the entire
sketch, but it is certainly possible to move things are differing speeds simply by varying the
amount that you increment, or by using floats and only adding a fraction to them. For more
long term and more time-precise control, Processing gives you full access to Western time
measurement.

Processing has several methods for getting the date and time from your computer's clock.

year() // current year, i.e. 2002, 2003, etc.
month() // returns the current month, from 1..12
day() // returns the day of month, from 1..31
hour() // the current hour, from 0..23
minute() // the current minute, from 0..59
second() // the current second, from 0..59

A special function called millis() returns the number of milliseconds (thousandths of a
second) since starting the applet. This is often used for timing animation sequences.

millis() // number of milliseconds since starting applet.

It is also possible to make your applet wait by using the delay function. Using this function
can effectively adjust frame rates.

http://www.jtnimoy.net/itp/p5/workshop/ (11 of 20) [8/28/2007 9:02:21 AM]

http://www.jtnimoy.net/itp/p5/workshop/quicktext.html
http://java.sun.com/docs/books/tutorial/java/javaOO/methods.html
http://proce55ing.net/learning/examples/nonlinear.html
http://proce55ing.net/learning/examples/bounce.html

Processing (Proce55ing) Tutorial for Macromedia Minds

delay(40); // takes a nap for 40 milliseconds

void loop(){
 print(month()+"/");
 print(day()+"/");
 print(year()+" ");
 print(hour()+":");
 print(minute()+":");
 println(second());
}

Here is a simple
example in which the
current time and
date are constantly
output to the text
area at the bottom
of the Processing
window.

This is not a very pretty example, but it's simple to understand. For some nicer (and more
complex) examples of time, see Clock, by Mescobosa, and Milliseconds, by REAS. These two
were done in Processing. Also, for more examples of animated motion, see the Processing
Motion Examples.

Mouse &
Keyboard

Access to the mouse and keyboard are both similar to the way Flash and Director do it. In
Lingo, the mouse is addressed with the mouseLoc, the mouseH, and the mouseV.
Additionally, there are also mouse event handlers such as on mouseDown. In Flash, there is
onClipEvent (mouseDown), etc. In Processing, the mousePressed() function is called
every time the mouse is pressed and the mouseReleased() method is called every time the
mouse if released. All you have to do is add the function to your code, just like loop().

void loop() {
 background(190);
 rect(mouseX-5, mouseY-5, 10,
10);
}

void mousePressed() {
 fill(0);
}
void mouseReleased() {
 fill(255);
}

In this simple example,
a square is drawn where
ever the mouse goes.

If you hold your mouse
down, the square will
turn black.

For further information on the mouse, see the Processing Mouse reference, and don't forget to
check out these exquisite Processing Mouse examples.

Keyboard input is equally similar to Flash and Director.

void loop() {
 if(keyPressed) {
 fill(102, 0, 0);
 } else {
 fill(204, 102, 0);
 }
 rect(30, 20, 55, 55);
}

In this simple example,
the square turns dark
red if any keyboard key
is being held down. No
background redraw is
needed!

The keyboard input can also be delivered to you in the form of an event handling function.

http://www.jtnimoy.net/itp/p5/workshop/ (12 of 20) [8/28/2007 9:02:21 AM]

http://proce55ing.net/learning/examples/seconds_minutes_hours.html
http://proce55ing.net/learning/examples/milliseconds.html
http://proce55ing.net/learning/examples/linear.html
http://proce55ing.net/learning/examples/linear.html
http://proce55ing.net/reference/mouseMoved_.html
http://proce55ing.net/learning/examples/mouse_1d.html

Processing (Proce55ing) Tutorial for Macromedia Minds

int x = 50;
int y = 50;

void loop(){
 background(190);
 rect(x,y,10,10);
}

void keyPressed(){
 if(key=='w'||key=='W'){
 y--;
 }else if(key=='s'||key=='S'){
 y++;
 }else if(key=='a'||key=='A'){
 x--;
 }else if(key=='d'||key=='D'){
 x++;
 }
}

In this simple example,
keys on the keyboard
will move the square
around.

For further information on keyboard input, see the Processing Keyboard reference, and don't
forget to check out these exquisite Processing Keyboard examples.

Presentation /
Exporting

In Flash and Director, there are key-controls and menu items
that can be selected to run your program in a way which

uses up the entire screen and covers up all ornaments present in
the operating system. Fullscreen mode is very useful in installation
and presentation. In Processing, you can choose the menu Sketch
> Present, or you can press Ctrl+P (+P on a Mac). Also try
pressing the play button while holding down SHIFT. The entire
screen will turn a dark gray, and you will see your creation in the
middle. In order to return to normal, you will be able to press
ESC. If that does not work, then there is a "stop" button at the
bottom left corner.

Any Processing program can be "published" as a Java applet. First make sure your sketch
is saved, then choose File -> Export to Web, or press Ctrl+E (or press the export

button). You will see the Processing message area say "Exporting for web . . ." for just a
moment, and then it will say "Done Exporting." In order to get the web files, venture into the
Processing sketch folder. Look for the folder with the name of your sketch and open it up. In
that folder, you will see another folder called applet. This folder can be uploaded to the web.
I highly encourage editing the default index.html that is generated from Processing. You
must keep all the included files relative to the HTML in the applet folder, as they are linked the
same way any other HTML media is linked.

Processing Folder/
 sketchbook/
 default/
 your_sketch_name/
 applet/
 your_sketch_name.java
 your_sketch_name.class
 your_sketch_name.jar
 index.html

save() and saveFrame()
If you need to export to non-interactive formats, it is possible to make .tif files of the
Processing window by using the saveFrame() function. Placing this method at the end of the
loop() will save the image on the screen. If saveFrame() is called multiple times, it will
create an image sequence as follows: screen-0001, screen-0002, screen-0003, etc. Using
save() will let you choose a file name. It is simple to import these images into Quicktime or
other video programs to make an animated documentation of a Processing program. Although
Processing has built in this easy image saving function, it is also possible to export to other

http://www.jtnimoy.net/itp/p5/workshop/ (13 of 20) [8/28/2007 9:02:21 AM]

http://proce55ing.net/reference/keyPressed_.html
http://proce55ing.net/learning/examples/keyboard.html

Processing (Proce55ing) Tutorial for Macromedia Minds

formats with a bit more work. For example, here is a Processing program that exports to
Adobe Illustrator.

Drawing
Image Files

Getting an image onto a Processing sketch is simple. Java only accepts JPGs or GIFs (unless
you want to do extra work). You can place the image into your sketch by using the file system
and a couple lines of code. First, save your sketch. Then you can find the sketch file by
looking in the Processing program folder. In that folder, you will see a folder called
sketchbook. In that folder, you will probably see two folders - one called examples and
another called default. In default, look for the folder with the same name as your sketch.
Inside that folder, you will see another folder called data. This is the folder in which you must
place your image file for easy Processing. Here is another way to say it:

Processing Folder/
 sketchbook/
 default/
 your_sketch_name/
 data/
 your_imagefile.gif

Let us assume that I have a sketch called image_example_1 and I want to draw the
following image called twombly.jpg, a drawing by Cy Twombly:

I would save it in the appropriate folder:

Processing Folder/
 sketchbook/
 default/
 image_example_1/
 data/
 twombly.jpg

And now I am ready to add the code.

size(150,150);
BImage b = loadImage("twombly.jpg");
image(b,0,0,150,150);

http://www.jtnimoy.net/itp/p5/workshop/ (14 of 20) [8/28/2007 9:02:21 AM]

http://www.jtnimoy.net/itp/p5/workshop/aiexport.html
http://www.jtnimoy.net/itp/p5/workshop/aiexport.html

Processing (Proce55ing) Tutorial for Macromedia Minds

BImage is an object that will hold your loaded file until you draw it. b is what I chose to call
this one. image() is what actually draws the image to the screen.
image(BImage, x, y, width, height);
You may also choose to omit the width and height, and the image will then draw at normal
scale.

Straight imported files are not the only way, as URLs also work.

For more detailed information concerning images, you may consult the Processing reference.
Here is the part called Loading_and_Displaying. Building upon this knowledge, it is also
possible to show sequencial images (video footage). For more excitement, see the Processing
Image Examples.

3D Form

There has been a lot of fuss concerning 3D being introduced
into inherently 2D environments. In the case of Flash,
numerous third party tools have been developed. In Director's
case, a 3D vector graphics sprite was retrofitted very recently.
The systems are so complex that a lot of people are
intimidated about even starting to learn.

In Processing, 3D only means adding a z-axis.

vertex(x, y, z);
line(x1, y1, z1, x2, y2, z2);
bezierVertex(x, y, z);
curveVertex(x, y, z);

box(size);
box(width, height, depth);
sphere(size);

translate(58, 48, 0);
rotateY(0.5);
box(40);

noFill();
translate(58, 48, 0);
rotateY(0.5);
box(40);

http://www.jtnimoy.net/itp/p5/workshop/ (15 of 20) [8/28/2007 9:02:21 AM]

http://proce55ing.net/reference/loadImage_.html
http://www.proce55ing.net/learning/examples/sequential.html
http://www.proce55ing.net/learning/examples/displaying.html
http://www.proce55ing.net/learning/examples/displaying.html

Processing (Proce55ing) Tutorial for Macromedia Minds

lights();
translate(58, 48, 0);
rotateY(0.5);
box(40);

noStroke();
lights();
translate(58, 48, 0);
rotateY(0.5);
box(40);

noStroke();
lights();
translate(58, 48, 0);
sphere(28);

Note that box and sphere do not ask you to specify position coordinates! In these examples,
it is necessary to use translate and rotate. There is also scale, and a pair of functions called
push and pop which allow you to bookmark your translations in a very organized fashion. To
learn the details on this useful way to organize your drawing, see the Processing Transform
Reference and the Processing Transform Examples. Of course, if you do not care for these
transformations, then there is always a solution.

Also note the use of lights() and noLights(). Using lights will render the 3D shape in a
manner which suggests shading. For more information concerning lighting, see the Processing
Lights Reference.

"What? that's it for 3D?"

If you think that this is not enough 3D to allow you to make interesting things, then check out
all the wonderful art that has already been created at Processing Software. And this is only
the beginning.

Pixels
Control over the pixels is currently far from Flash. SetPixel and GetPixel have just been
added to Director (and already, a well known Director-loving interactive artist has adopted the
nickname SetPixel). However, Director is quite possibly the slowest pixel addressing system
you will ever work with. ITP Students attend a class taught by Danny Rozin called The World
- Pixel by Pixel, and continue to program in C because it is the only thing fast enough for
them to achieve their conceptual goals (Lingo and MAX being the only alternatives). It is
popular for such ITP students to prepare for Danny's class by attending a C course. Working
with Processing pixels is considerably faster than Image Lingo, and arguably less complex.
Although Java does not compare to the speed of C, soon Danny's students might explore the
possibility of using Processing to speed the learning curve.

get(x, y); // Returns an integer
set(x, y, color);
pixels[index]; // Array containing the display window

http://www.jtnimoy.net/itp/p5/workshop/ (16 of 20) [8/28/2007 9:02:21 AM]

http://proce55ing.net/reference/translate_.html
http://proce55ing.net/reference/translate_.html
http://proce55ing.net/learning/examples/translate.html
http://www.jtnimoy.net/itp/p5/workshop/hidetransforms.html
http://proce55ing.net/reference/lights_.html
http://proce55ing.net/reference/lights_.html
http://proce55ing.net/software
http://www.setpixel.com/
http://stage.itp.tsoa.nyu.edu/%7Edanny/
http://stage.itp.tsoa.nyu.edu/%7Epixels/syllabus.htm
http://stage.itp.tsoa.nyu.edu/%7Epixels/syllabus.htm

Processing (Proce55ing) Tutorial for Macromedia Minds

int width = 100;
int height = 100;
BImage b; // declare variable "b" of type BImage
b = loadImage("basel.gif");

image(b, 0, 0);
for (int i=30; i<(width-15); i++) {
 for(int j=20; j<(height-25); j++) {
 color here = get(30, j);
 set(i, j, here);
 }
}

With control over the pixels, you can also implement your very own drawing routines. For
example, here is transparency. Writing the rest of the Director inks would not be so hard.
Here is a dotted line function.

For more information about pixel play, see the Processing Image reference and the Processing
Image Examples.

Typography
The typographic rendering system currently uses a Processing-specific font file format. The
makers of the software have included a font import menu item to help you out, and even then
- they have provided the Processing programmer with a wealth of fonts to choose from. Click
here to see all of the currently included fonts. These fonts are stored as bitmap images. Here
is a very simple example of rendering text to the sketch. Go ahead and run this program -
and expect to get an error.

size(200,100);
background(#FFFFFF);
fill(#000000);
BFont f = loadFont("Bodoni-Italic.vlw.
gz");
textFont(f, 50);
text("handglove", 14, 60);

The error will say that it cannot find Bodoni-Italic.vlw.gz. This is because you have not yet
imported the font file into your data folder. (see the images section of this tutorial for more
information on your data folder). After choosing the font you like, look in the fonts folder
within the Processing program folder. Copy your font of choice into your sketch's data folder,
and the program should run fine after that.

BFont f = loadFont("Bodoni-Italic.vlw.gz"); loads that font file into the variable f.

textFont(f, size); sets the current font and size before drawing the text.

text("handglove", x, y); renders the text in place.

This example incorporates rotation, and a simple for loop.

http://www.jtnimoy.net/itp/p5/workshop/ (17 of 20) [8/28/2007 9:02:21 AM]

http://proce55ing.net/learning/examples/transparency.html
http://proce55ing.net/discourse/yabb/YaBB.cgi?board=general;action=display;num=1040549471
http://www.proce55ing.net/reference/getPixel_.html
http://www.proce55ing.net/learning/examples/reading_pixels.html
http://www.proce55ing.net/learning/examples/reading_pixels.html
http://www.jtnimoy.net/itp/p5/workshop/typelist.html
http://www.jtnimoy.net/itp/p5/workshop/typelist.html
http://www.jtnimoy.net/itp/p5/workshop/typelist.html

Processing (Proce55ing) Tutorial for Macromedia Minds

size(200,100);
noStroke();
BFont f = loadFont("Univers66.vlw.gz");
textFont(f, 50);
fill(#FFFFFF);
ellipse(-50,-55,150,150);
fill(#CC6600);
for(int i=0;i<20;i++){
 rotateZ(0.2);
 text("dizzy", 90,0);
}

Okay. If you are not a "typography person" and do not care for any of this, there is always a
way to simplify things, at the expense of control. Furthermore, if you need something like a
text entry field, it's useful to write your own. Most widgets of vernacular user interface are not
hard to add to a project if you think of them as small, modular, interactive exercises - rather
than seeing them as some kind of thing that the operating system exclusively provides. The
thing you gain is ultimate control over the design. For more vernacular interface re-
inventions, see the Processing GUI Examples.

Also see the whimsical Processing typography examples. Processing comes from a group of
people concerned with aesthetics and computation. New forms of typography is one of the
things that their particular MIT Media Lab research group is world famous for.

Serial
Through a serial port, a computer can communicate with anything from Palm Pilots to medical
equipment. It is common in electronic arts to use the serial port to talk to custom built
devices. Director is able to do this with the help of third party Xtras. Flash does not support
serial ports, nor does it have a third-party plugin system. Processing has serial communication
built in. In this example, we will make a turning knob interact with a Processing sketch. A
word of warning, however; this section is technically more advanced than the previous
sections, as it requires a working knowledge of basic electronic circuitry.

This circuit uses a BX-24, which is a common prototyping integrated circuit widely used at
ITP, but also at other similar places. For more information on setting up a BX-24, see Tom
Igoe's Physical Computing reference as well as the lab assignments from his Physical
Computing class at ITP.

Here is a picture of the circuit, excluding the +5v power supply - in order to simplify
the photo. It uses a 10K potentiometer with a 1K resistor at pin 13. For details on
setting this up, see the ITP Intro to BX-24.

sub main()
 delay 0.5
 do
 debug.print cStr(getADC(13))
 delay 0.1
 loop
end sub

Here is the program to download into the chip. All
it does is feed the angle of the knob back to the
PC. You will know it is working when you see a
stream of numbers in the BasicX debug monitor.

Processing allows you to choose which serial port it will work with through the interface
Sketch -> Serial Port submenu.

http://www.jtnimoy.net/itp/p5/workshop/ (18 of 20) [8/28/2007 9:02:21 AM]

http://www.jtnimoy.net/itp/p5/workshop/quicktext.html
http://www.jtnimoy.net/itp/p5/workshop/quicktext.html
http://www.jtnimoy.net/itp/p5/workshop/textension_excerpt
http://proce55ing.net/learning/examples/rollover.html
http://www.proce55ing.net/learning/examples/custom_letter.html
http://acg.media.mit.edu/
http://www.basicx.com/
http://nylon.media.mit.edu/
http://stage.itp.nyu.edu/%7Etigoe/pcomp/examples.shtml
http://stage.itp.nyu.edu/%7Etigoe/pcomp/examples.shtml
http://stage.itp.nyu.edu/%7Etigoe/pcomp/intro-pcomp-syllabus-f02.shtml
http://www.jtnimoy.net/itp/p5/workshop/images/serial_picture.jpg
http://stage.itp.nyu.edu/%7Etigoe/pcomp/bx24.shtml

Processing (Proce55ing) Tutorial for Macromedia Minds

String buff = "";
int val = 0;

void setup() {
 beginSerial(19200);
}

void loop() {
 background(val,val,val);
}

void serialEvent() {
 if(serial!=10){
 buff += (char)serial;
 }else{
 buff = buff.substring(0,buff.length()-1);
 val = Integer.parseInt(buff)/4;
 buff = "";
 }
}

This Processing program will listen to
the turning knob, and change the
background color between black and
white.

For more information about serial, see the Processing serial reference.

The Future
Processing is a brand new work in progress, and as I said before, it is important to continue
checking the website for updates. A new release can easily be installed in place of the new
one, and your sketchbook/default folder can simply be copied from version to version. As I
write this document, Processing is at version ALPHA 0050, when I came back to update the
tutorial in Fall 2004, they were at ALPHA 0068. Processing might change the names of the
three modes, basic, standard and advanced to something more fitting. At the time of
ALPHA 0050, Casey was telling me it might also change its name from Proce55ing to
Processing, and we all watched the change happen. The graphics engine has improved by
adding anti-aliased rendering, alpha values in color (transparency factor), and the polygon
fill will be improved. This is not to say that one cannot already write these things with a bit of
research. Processing was written in the same language that it asks users to program in. This
is different from Flash and Director, which are authored mainly in C. Amit Pitaru has created
Sonia, a library for creating sound. As network communication is very useful, it is a prime
item on the todo list. This may include downloading files from the web, but also generalized
TCP/IP allowing you to talk to telnet, FTP, Gnutella, Carnivore, other Processing apps, and
even Flash and Director programs. There is already network code floating around the
Processing discussion pages, and it will probably be formally supported in the future. For
camera vision, there is a library called JMyron. Myron is a Processing implementation of
WebCamXtra, an open source camera vision Xtra for Director. In the spirit of integrated
development environments, Processing hopes to add a more built-in tools such as a color
picker, and a bezier editor. In addition to the software, Casey and Ben hope to expand the
community. A code repository will be established as a central directory for useful pieces of
Processing code. Processing is also open-source, which means that anyone can edit the
Processing software itself. A proper open-source framework will be established so that anyone
can download the code, recompile Processing, and then contribute the new version. There is
already an accumilating page of Processing extension libraries.

With all this in mind, I hope that you will find Processing useful in addition to Macromedia
tools that you are either learning, or have already mastered. Please publish or send any
Processing examples around so that we might learn from your explorations, and do not forget
to be a part of the online community by engaging in the discourse section of the Processing
site. Happy creating!

http://www.jtnimoy.net/itp/p5/workshop/ (19 of 20) [8/28/2007 9:02:21 AM]

http://processing.org/reference/libraries/serial/
http://www.wdvl.com/Authoring/Graphics/Tools/Photoshop/anti-alias.html
http://processing.org/reference/libraries/sonia/
http://www.rhizome.org/carnivore/
http://webcamxtra.sourceforge.net/
http://processing.org/reference/libraries/index.html

Processing (Proce55ing) Tutorial for Macromedia Minds

Josh Nimoy was a
graduate student in the
Interactive
Telecommunications
Program at New York
University's Tisch School of
the Arts in 2004. He creates
and exhibits interactive
media work concerned with
vernacular digital
interactivity, nature, and
experimental typography
systems. Nimoy values the
effects of good teaching,
good communication, and
honest work. He also holds
a BA in Design and Media
Arts from UCLA School of
Arts and Architecture,
specializing in digital
cultures and technologies.
Josh was a visiting
undergraduate researcher at
the MIT Media Laboratory in
1999 in the Aesthetics and
Computation Group, led by
John Maeda, where he
worked with Ben Fry and
Casey Reas.
website

Benjamin Fry is a doctoral
candidate at the MIT Media
Laboratory. His research
focuses on methods of
visualizing large amounts of
data from dynamic
information sources. The
work uses ideas from
distributed and adaptive
systems to form organic
representations that react
and respond to the input
data. This work is currently
directed towards Genomic
Cartography which is a
study into new methods to
represent the data found in
the human genome. At MIT,
he is a member of the
Aesthetics and Computation
Group, led by John Maeda.
Ben received an
undergraduate degree from
the School of Design at
Carnegie Mellon University,
with a major in Graphic
Design and a minor in
Computer Science.
website

Casey Reas is an Associate
Professor at the newly
established Interaction
Design Institute Ivrea in
northern Italy. His work
explores abstractions of
biological and natural
systems through diverse
digital media including
software art, digital prints,
and responsive installations.
In 2001, Casey received his
M.S. degree in Media Arts
and Sciences from the MIT
Media Laboratory, where he
was a member of John
Maeda's Aesthetics and
Computation Group (ACG).
Casey has lectured and
exhibited in Europe, Asia,
and the United States. His
work has recently been
shown at the American
Museum of the Moving
Image, Ars Electronica,
Interaction01 in Ogaki, New
York Digital Salon, Museum
of Modern Art, P.S.1, and
Siggraph2000.
website

last updated October 31, 2005

http://www.jtnimoy.net/itp/p5/workshop/ (20 of 20) [8/28/2007 9:02:21 AM]

http://www.itp.nyu.edu/
http://www.itp.nyu.edu/
http://www.itp.nyu.edu/
http://jtnimoy.net/
http://acg.media.mit.edu/people/fry
http://www.groupc.net/

	jtnimoy.net
	Processing (Proce55ing) Tutorial for Macromedia Minds

